Beyond Outerplanarity

نویسندگان

  • Steven Chaplick
  • Myroslav Kryven
  • Giuseppe Liotta
  • Andre Löffler
  • Alexander Wolff
چکیده

We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer k-planar graphs, where each edge is crossed by at most k other edges; and, outer k-quasi-planar graphs where no k edges can mutually cross. We show that the outer k-planar graphs are (b √ 4k + 1c+ 1)-degenerate, and consequently that every outer k-planar graph can be (b √ 4k + 1c+2)colored, and this bound is tight. We further show that every outer kplanar graph has a balanced separator of size at most 2k + 3. For each fixed k, these small balanced separators allow us to test outer k-planarity in quasi-polynomial time, i.e., none of these recognition problems are NP-hard unless ETH fails. For the outer k-quasi-planar graphs we discuss the edge-maximal graphs which have been considered previously under different names. We also construct planar 3-trees that are not outer 3-quasi-planar. Finally, we restrict outer k-planar and outer k-quasi-planar drawings to closed drawings, where the vertex sequence on the boundary is a cycle in the graph. For each k, we express closed outer k-planarity and closed outer k-quasi-planarity in extended monadic second-order logic. Thus, since outer k-planar graphs have bounded treewidth, closed outer k-planarity is linear-time testable by Courcelle’s Theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On triangulating k-outerplanar graphs

A k-outerplanar graph is a graph that can be drawn in the plane without crossing such that after k-fold removal of the vertices on the outer-face there are no vertices left. In this paper, we study how to triangulate a k-outerplanar graph while keeping its outerplanarity small. Specifically, we show that not all k-outerplanar graphs can be triangulated so that the result is k-outerplanar, but t...

متن کامل

Blocks of Hypergraphs - Applied to Hypergraphs and Outerplanarity

A support of a hypergraph H is a graph with the same vertex set as H in which each hyperedge induces a connected subgraph. We show how to test in polynomial time whether a given hypergraph has a cactus support, i.e. a support that is a tree of edges and cycles. While it is NP-complete to decide whether a hypergraph has a 2-outerplanar support, we show how to test in polynomial time whether a hy...

متن کامل

Well-Formed Separator Sequences, with an Application to Hypergraph Drawing

Given a hypergraph H, the Planar Support problem asks whether there is a planar graph G on the same vertex set as H such that each hyperedge induces a connected subgraph of G. Planar Support is motivated by applications in graph drawing and data visualization. We show that Planar Support is fixed-parameter tractable when parameterized by the number of hyperedges in the input hypergraph and the ...

متن کامل

A Universal Point Set for 2-Outerplanar Graphs

A point set S ⊆ R is universal for a class G if every graph of G has a planar straight-line embedding on S. It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a sub-quadratic universal point set for them is one of the most fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a key property ...

متن کامل

Square-Contact Representations of Partial 2-Trees and Triconnected Simply-Nested Graphs

A square-contact representation of a planar graph G = (V,E) maps vertices in V to interiordisjoint axis-aligned squares in the plane and edges in E to adjacencies between the sides of the corresponding squares. In this paper, we study proper square-contact representations of planar graphs, in which any two squares are either disjoint or share infinitely many points. We characterize the partial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017